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GLOBAL ARTIFICIAL BOUNDARY CONDITIONS FOR COMPUTATION OF
EXTERNAL FLOW PROBLEMS WITH PROPULSIVE JETS”

SEMYON TSYNKOV'!, SAUL ABARBANEL!, JAN NORDSTROM!, VIKTOR RYABEN'KIIY, AND VEER VATSAI

Abstract. We propose new global artificial boundary conditions (ABC’s) for computation of flows
with propulsive jets. The algorithm is based on application of the difference potentials method (DPM).
Previously, similar boundary conditions have been implemented for calculation of external compressible
viscous flows around finite bodies. The proposed modification substantially extends the applicability range
of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our
numerical methodology, and discuss the corresponding computational results. The particular configuration
that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in
a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows
around airfoils and wings, current results for the jet flow casc corroborate the superiority of the DPM-based
ABC'’s over standard local methodologies from the standpoints of accuracy, overall numerical performance,

and robustness.

Key words. external flow problems, jet exhaust, artificial boundary conditions, difference partials
method

Subject classification. Applied and Numerical Mathematics

1. Introduction. Many typical problems in aerodynamics including those that present immediate
practical interest, e.g., flows around aircraft, are formulated on infinite domains. It is, however, obvious,
that any discretization used for solving such problems on the computer must be finite. Therefore, any
numerical solution methodology for these problems has to be supplemented (or, rather, preceded) by a
special technique that helps create such finite discretizations.

A widely used approach to this problem is based on truncating the original flow domain prior to the
actual discretization and numerical solution. Subsequently, one can construct a finite discretization on the
new bounded computational domain using one of the standard techniques: finite differcnces, finite elements,
or other. However, both the continuous problem on the truncated domain and its discrete counterpart
will be subdefinite unless supplemented by the appropriate closing procedure at the external computational
boundary. This is done by using artificial boundary conditions (ABC’s); the word “artificial” emphasizing
here that these boundary conditions are necessitated by numerics and do not come from the original physical
formulation.

The ideal or, in other words, exact, ABC’s are obviously those that would drive the error associated

*This research was supported by the Director’s Discretionary Fund and the National Aeronautics and Space Administration
under NASA Contract No. NAS1-97046 while the first through fourth authors were in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.

tSchool of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tcl Aviv 69978, Israel, tsynkovemath.tau.ac.il.

#School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, saul@math.tau.ac.il.

SFFA, The Aeronautical Research Institute of Sweden, Box 11021, S-161 11, Bromma, Sweden, nmj@ffa. se.

9IKeldysh Institute for Applied Mathematics, Russian Academy of Sciences, 4 Miusskaya Sq., Moscow 125047, Russia,
ryab®spp.keldysh.ru.

l Aerodynamic and Acoustic Methods Branch, Fluid Mechanics and Acoustics Division, Mail Stop 128, NASA Langley
Research Center, Hampton, VA 23681-2199, vatsa@tabdemo.larc.nasa.gov.



with domain truncation to zero. However, numerically efficient procedures of this kind cannot be attained
routinely except in model (mostly one-dimensional) problems and therefore, for typical applications one uses

primarily different approximate rather than exact methodologies.

The nature of the difficulties associated with constructing “he exact ABC’s is that in most cases such
boundary conditions appear nonlocal (in space and also in time for unsteady problems). Although the cor-
responding computational algorithms are robust and highly accurate, they can be cumbersome and typically
apply only to rather simple geometries. On the other hand, the alternative local approaches that yield
inexpensive and geometrically universal numerical proccdures may often lack accuracy in computations,
which, in turn, necessitates choosing excessively large computational domains. Basically, higher accuracy
due to boundary conditions implies that more of the nonlocal nature of exact ABC’s has to be taken into
consideration. As a consequence, to avoid extra complexity due to the nonlocality of boundary conditions,
most of the modern production algorithms in CFD still employ local ABC’s that are based on simplified
flow models. The possibility to use local ABC’s comes, as mentioned, at the expense of running the cases

on large domains.

Generally, it has been demonstrated theoretically and computationally in both CFD and other areas of
scientific computing that the treatment of ABC’s may have a profound impact on the overall performance
of numerical algorithms and interpretation of the results. The literature on various ABC’s techniques is
extensive, a detailed review can be found in work by Givoli[l, 2], as well as in a more recent paper by
Tsynkov(3].

The construction of ABC’s based on the difference potentials method (DPM) by Ryaben’kii [4, 5, 6], was
an attempt to combine in one technique the advantages relevant to both local and global methodologies, sec
Refs. 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17]. Thesc boundary conditions employ finite-difference counterparts
to Calderon’s pseudodifferential boundary projection operators and generalized potentials that have been first
proposed in work by Calderon [18] and then also studied by Seeley [19]. The DPM-based ABC’s have been
successfully implemented along with NASA-developed multigrid Navier-Stokes solvers for the calculation of
two-dimensional (solver FLOMG by Swanson and Turkel [20, 21, 2!]) and three-dimensional (solver TLNS3D by
Vatsa, et al. [23, 24]) compressible viscous flows around airfoils (VACA0012, RAE2822) and wings (ONERA
Ms).

In many numerical tests the DPM-based boundary conditions have consistently outperformed the stan-
dard local methods from the standpoints accuracy, multigrid convergence rate, and overall robustness (they
allow for a substantial reduction of the domain size while preserving the accuracy and may also speed up the
convergence of multigrid iterations by up to a factor of three, i.., they would require only about one third
of the original number of multigrid cycles for reducing the initia residual by a prescribed factor). Note, the
standard local boundary conditions for external flows that are r«ferred to above are typically based on one-
dimensional characteristics analysis for the front or inflow part of the artificial boundary and specification
of the free-strcam pressure and extrapolation of all other quantities on the rear or downstream portion of
the outer boundary; this treatment may or may not be supplemcnted by the point-vortex correction [25] for
the two-dimensional case; an example of geometry in three dim :nsions is shown on Figure 2.1 in the next

section.

All the problems analyzed previously in the DPM framework (see the aforementioned references) can
actually be characterized as “pure” external flows. In this paper, we for the first time incorporate a new and
essentially different physical element into the formulation of the problem; namely, we will consider external

flows around the configurations with jet ezhaust. The problems of this kind have never been studied by means



of the DPM before and including this new flow phenomena into the range of admissible formulations for the
DPM-based methodology substantially enlarges the scope of its capabilities. Moreover, as different flows with
jets are frequently encountered in aerospace applications, the possibility of computing external aerodynamics
more efficiently with jet exhaust phenomena taken into account is important for both configuration analysis
and design.

The material in the paper is prepared as follows. In the next section we outline the basic DPM-based
procedure as developed for pure external flows; in the section that follows we describe the changes that are

necessary for incorporating the jet exhaust flows; then, we present the numerical results and conclusions.

2. DPM-based ABC’s: Basic Algorithm. In this section, we essentially reproduce the correspond-
ing derivation from Ref. [15]. The paper by Tsynkov [16] contains a substantially more detailed account on
how to set the three-dimensional DPM-based ABC'’s.

Fi1G. 2.1. Schematic geometric setup for the ONERA M6 wing; wing on the left is enlarged.

We consider a steady-state flow of a viscous, compressible, perfect gas past a finite three-dimensional
configuration. The flow is uniform and subsonic at infinity; it is also symmetric with respect to the Cartesian
plane z = 0. The hydrodynamics equations are discretized and integrated on a grid generated around the
immersed body(ies). The grid actually defines a bounded computational domain; the ABC’s that would
close the truncated problem should be set at the external coordinate surface of the grid. Let us denote
this surface I'; for a one-block curvilinear C-O type boundary-fitted grid around the ONERA M6 wing the

schematic geometric setup is shown in Figure 2.1.



The outermost coordinate surface of the grid is designated I'; (see Figure 2.1); it represents the ghost
nodes (or ghost cells for the finite-volume formulation). Clearly. when the stencil of the scheme used inside
the computational domain is applied to any node from T', it gencrally requires some ghost cell data. Unless
the required data are provided, the finite-difference system solved inside the computational domain appears
subdefinite, i.e., it has less equations than unknowns. Therefore, in practical framework the closure of the
discretized truncated problem means specification of the solution values at the ghost cells. This will be
donc by means of the DPM-based ABC’s so that the boundary data used for the closure admit an exterior
complement that solves the problem outside the computationa’ domain. As soon as the data in the ghost
cells have been obtained as functions of the data in the interior cells (I'; as a function of I'), the corresponding
relations can be incorporated into the actual solver used inside the computational domain. If, for example,
this is an iterative solver (very often the case), then one has tc update the ghost cells at each iteration to

advance to the next “time” step.

To construct the boundary conditions, we first assume that the flow perturbations against constant free-
stream background are small in the far field and consider the linearized problem outside the computational
domain (i.e., outside I'). It is important to emphasize that the possibility of far-field linearization (i.e., the
possibility to retain only the first-order terms with respect to perturbations in the governing equations)
requires special justification, in particular, when analyzing the transonic flows. Wec do not present the
corresponding argument here; a simple asymptotic analysis in the framework of the full potential model that
Justifies the far-field linearization in three dimensions can be found in our previous work [15, 16]. Of course,
even if we know that the far field is linear, we still cannot say a priori whether or not the linearization
outside I is possible for a particular configuration of the domains. Clearly, for a very large computational
domain one can linearize the flow outside I', and as we approach the source of perturbations (the immersed

configuration), the validity of lincarization is verified a posteriori (see, e.g., Refs. [8, 9, 12, 15, 16)).

We will be considering the entire problem in the frameworl: of the thin-layer equations (as opposed to
the full Navier-Stokes equations). This simplified low model still retains all the essential properties pertinent
to the class of problems that we are studying and at the same time it is less expensive numerically. In the
far field, we write down the linearized dimensionless thin-layer cquations as follows
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where p, u, v, w, and p are the perturbations of density, Cartesian velocity components, and pressure,
respectively, Re is the Reynolds number, Pr is the Prandtl number, and « is the ratio of specific heats. The
full dimensionless quantities at infinity are: po = 1, up = 1, vo = 0, wo = 0, po = 1/(kMZ). System (2.1a) is
supplemented by the homogeneous boundary condition at infinit y:



U= (Pauﬂhwap) — (0,0,0,0,0)
(2.1b)
as (2% +y%+ 22) — oo,

which corresponds to the free stream limit of the solution. As has been mentioned, the DPM-based ABC’s
will close the discretized truncated system by providing the missing external boundary data. These data will
admit an exterior complement that would solve the discrete counterpart of system (2.1a) and meet boundary
condition (2.1b) in some approximate sense.

We construct a second-order accurate discretization of system (2.1a) on the auxiliary Cartesian grid;
a detailed description of the scheme can be found in Ref. [16]. The DPM will provide us with the com-
plete boundary classification of all those and only those exterior grid vector-functions that solve the discrete
counterpart of (2.1a) outside the computational domain and meet boundary condition (2.1b) (in the sense
described below). The foregoing boundary classification will be obtained as an image of a special projection
operator, which can be considered a discrete analogue to Calderon’s pscudodifferential boundary projec-
tion [18, 19]. The projection operators act on the grid functions defined as boundary traces of the solution.
In actual computations, the boundary conditions are set as follows. Every time we need to update the ghost
cells we take an appropriate sct of data from inside I" (see below), project it onto the subspace in the entire
space of boundary data that admits the correct exterior complement, and obtain the ghost cell values by
calculating this complement on I';.

The implementation of the DPM-based ABC’s starts with splitting the nodes of the auxiliary Cartesian
grid into two distinct groups: thosc that are inside I' and those that are outside I". Applying the stencil of
the scheme for (2.1a) to each node of both groups, we consider the intersection of the grid sets swept by the
stencil. This intersection is called the grid boundary #~; it is a multi-layered fringe of nodes of the auxiliary
Cartesian grid located near and straddling the continuous boundary I'.

For any function u on the Cartesian grid we definc its trace T'ryu on v as merely a restriction. For
any grid function u, specified on 4 we introduce the generalized potential P u., with the density u.; the
generalized potential is defined on the auxiliary Cartesian grid on v and outside it. The generalized potential
is obtained as a solution of the special auxiliary problem (AP); solution of the AP replaces and extends the
operation of convolution with the fundamental solution in classical potential theory. The AP is driven by
the right-hand side that depends on u.,, the formal construction of this right-hand side is the same in two-
and three-dimensional cases, secc Refs. {7, 11, 12, 16] for details. The AP is formulated on a special finite
auxiliary domain and the boundary conditions for the AP are chosen so that they approximate boundary
condition (2.1b). The auxiliary domain is a Cartesian parallelepiped (i.c., aligned with the coordinate
directions) that fully contains I'y. To make sure (2.1b) is taken into account properly, we specify periodicity
boundary conditions in the cross-stream directions y and z. The periods are chosen sufficiently large to
guarantee that the periodic solution considered on a finite fized neighborhood of I' and I'y approximate weill
the theoretical non-periodic solution; the latter can be thought of as a limit when the periods in y and z
approach infinity. The approximation of a non-periodic solution by the periodic one on a fixed subinterval
as the period increases is discussed in our work [7, 11, 12].

Once the problem has been “periodized” in the cross-stream directions, we can separate the variables and
then use a semi-analytic approach for the streamwise direction z. To do that, we apply the discrete Fourier
transform in y and z to the finite-difference counterpart of (2.1a) and obtain a family of one-dimensional

difference equations:



(2.2) Aplp i + Byt k= frn 12k
m=1,....M, k=(ky, i),
ky=0,...,Jy, k, =0,...,J,,
where Ay and By are the 5 x 5 matrices and M + 1, 2J, + 1, end J, + 1 are the numbers of grid nodes in
the z, y, and z directions, respectively (symmetry with respect to z = 0 is taken into account, as well as the

fact that u and f are real-valued). Boundary conditions in the direction z are specified separately for each

pair of wavenumbers k:

(2.3a) S7 (k)i =0,

(2.3b) S’*(k)ﬂ.M,k =0,

where

(2.4a) S (k)= Il (Qr—ps(k)),
s (R)[>1

(2.4b) Stk)=II (Qk—pa(R)),
I (k)| <1

Qr = A;lBk, and p,(k) are the eigenvalues of Q. The semi-analytic boundary conditions (2.3a) and
(2.3b) (the eigenvalues for (2.4) are calculated numerically) expli-itly prohibit growing modes of the solution
in the left and right directions, respectively.

In our work [12, 16], we have also discussed the possibility of replacing the Fourier transforms by non-
unitary transforms. The latter may be needed when the grid in y and/or z is stretched (which provides for
a drastic cost reduction) and consequently, the corresponding eigenfunctions form a skew basis.

The foregoing AP allows us to calculate the generalized difference potential Pu, for any grid density
u, specified on 4. The composition of the operators T'r, and P, P, = Tr, P, is a projection, PAY2 =P,
and it is a discrete counterpart of Calderon’s boundary projection [18, 19] for system (2.1a). The image of
this projection, ImP,, contains all those and only those u.,’s th:t are the traces of some exterior difference
solution to (2.1a) that satisfies the boundary conditions of the AP — periodicity in y and z and boundary
conditions (2.3) in x. The latter boundary conditions, in turn, asproximate (2.1b).

Having constructed the procedure for calculating the potent als and projections for the discrete version
of (2.1a), we can now close the system inside the computationa, domain, i.e., obtain the ABC’s. First, we
take u and Ou/8n on I', n is the normal, (these data are availa>le from inside the computational domain)
and, using interpolation Rr along I" and the first two terms of Taylor’s expansion (denoted =), obtain u.:

du
(2.5) u, = myRr (u, :9;)

I

Then, we need to calculate the potential P v., for the density v, = P,u., and interpolate it to the nodes I';:



(2.6) u| =Rr, Pvy=Rr, Pu,.

I

Finally, the ABC’s are obtained in the operator form

ou
r, =T (U, 'a—n)

where T'is composed of the operations of (2.5) and (2.6). Boundary condition (2.7) is applied every time we

(2.7) u

s
r

need to update the ghost cells when solving the interior problem (e.g., on every iteration). The implemen-
tation of ABC’s (2.7) can either be direct or involve preliminary calculation of the matrix T. In the latter
case, the runtime implementation of the ABC’s (2.7) is reduced to a matrix-vector multiplication. Numerical
results for flows around the ONERA M6 wing obtained with the DPM-based boundary conditions (2.7) are
summarized in work by Tsynkov and Vatsa [15] and Tsynkov [16, 17].

3. Application to Jet Flows. The major difference between the formulation of the previous section
and the flow with jet exhaust is that in the vicinity of the jet we can no longer claim that flow perturbations
against the free-stream background are small. Indeed, inside the propulsive jet the speed of the flow is
typically much higher than the one in the surrounding area, moreover, other parameters, e.g., temperature,
may also differ substantially. Therefore, the linearization of the flow against constant free-stream background
that yields equations (2.1a), (2.1b) is, generally speaking, not valid in this casec.

However, in many applications (in particular, acrospace) one can clearly distinguish between those parts
of the overall flow that contain jet(s) and the remaining areas. Therefore, the most comprehensive way
to develop the far-field linearization in this situation will apparently be to use the appropriate asymptotic
solutions for jets (see, e.g., Abramovich [26]) in the corresponding regions as a background. For flow regions
outside the jet, it is always reasonable to assume that the foregoing linearization (2.1) will still be valid there.

The particular setting that we will be studying hereafter is schematically shown in Figure 3.1. (The
meaning of the two external grid surfaces is the same as I’ and I'y in Figure 2.1.) It includes a three-
dimensional slender body (symmetric with respect to the z = 0 plane but not axially symmetric, i.e., not a
body of revolution) with sharp nose and boat-tail aft configuration; the rearmost plane surface of the body
(not shown explicitly in Figure 3.1) is actually a location of the nozzle outlet; the outlet is rectangular in
cross section. The exterior flow is subsonic with the free-stream Mach number M, = 0.6 and zero angle of
attack, the jet that is discharged from the outlet is supersonic, M; = 1.6, and confluent with the exterior
flow.

The specific shape of the body (see Figure 3.1) as well as parameters of the flow have been previously
proposed for numerical study and analyzed in work by Compton [27]. In this original work [27], Compton had
calculated external flow with the propulsive jet and also considered the interior portion of the flow, namely
the flow in the actual nozzle located inside the afterbody (this nozzle flow obviously produces the jet). For
our study, we have generated new grids and also simplified the overall formulation by eliminating the nozzle
and specifying instead the uniform supersonic flow conditions at the nozzle outlet i.e., at the place where
the jet starts. Compton’s goal [27] was to assess the performance of different turbulent models including
their prediction capabilities for the flow inside the nozzle; our goal is to assess the performance of different
external boundary conditions for the flows with jet exhaust. We, therefore, think that the aforementioned

simplification is justified.
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FiG. 3.1. Schematic geometric setup for the slender body with jet ezhaust.

Our typical grid consists of two blocks: block 1 of C-O type is for the exterior flow and block 2 of H-O
type is for the jet portion (see Figure 3.1). Of course, this subdivision can only have an approximate meaning
because the jet will obviously tend to spread while propagating downstream; basically, it means that the
shear layer between the jet and coflow is located in the vicinity of the block interface. On this interface, the
two grid blocks are point-matched, which is a requirement for TLNS3D.

As has been mentioned, the exterior flow is subsonic and the jet is supersonic (other parameters of the
flow will be pointed out later). The standard boundary condiions in TLNS3D for this two-block jet flow
case include one-dimensional characteristics for external inflow (t.lock 1, upstream portion of the boundary),
specification of the free-stream pressure with extrapolation of all other quantities for external outflow (block
1, downstream portion of the boundary), extrapolation of all qiantities for the jet downstream boundary
(block 2) and specification of all quantities for the jet inflow boundary (block 2); the boundary conditions
on the solid surface of the body are standard no-slip conditiors. Extrapolation of all flow quantities at
the jet outflow boundary is justified because as shown by numerous simulations the core of the jet remains

supersonic cven at large distances downstream of the body, at least as far as 40 50 nozzle calibers away.

The primary goal of this paper is to develop an alternative :o the foregoing local boundary conditions
for the jet flow case - global ABC’s similar to those described in the previous section, and compare the
performance of the two techniques. A direct implementation of -he ABC’s (2.7) will, however, encounter a

major obstacle in this case: as has been mentioned, we cannot liazearize against the free-stream background



in the jet region and therefore, cannot directly implement the operator T' of (2.7) over the entire external
boundary as this operator is obtained on the basis of the lincar system (2.1). Of course, if we linearized
the flow against constant free-stream background outside the jet and against some approximate asymptotic
solution in the jet region (sec Ref. [26]) and then used the corresponding linear system (unlike (2.1a), it will
have variable coeflicients) to construct the operator analogous to T' of (2.7), then we could have applied
the boundary conditions (2.7) straightforwardly as done in the previous work [15, 16] for flows with no
jets. Computation of the new operator T in this framework will, in turn, require a different construction
of the AP, certainly more elaborate (because of variable coefficients) and possibly more expensive than the
one described in the previous section (see formulae (2.3), (2.4), (2.5)). One way of largely eliminating the
difficulties associated with variable coefficients is apparently to take advantage of the supersonic nature of the
jet and use marching-type algorithms in a subdomain of the new AP domain. Although this may make the
whole foregoing program feasible, we consider its implementation as future work. In this paper we present

the algorithm based on boundary conditions (2.7) with minimal alterations.

As the ABC’s (2.7) obviously cannot be applied in the jet area, i.e., on that portion of the artificial
boundary where the jet exits the domain, we need another procedurc. The most natural choice will be
to extrapolate all flow quantitics downstream at the outflow boundary because the core of the jet remains
supersonic even at large distances away from the nozzle outlet. Of course, we cannot actually predict where
on the downstream boundary the flow actually becomes subsonic, i.e., where the extrapolation ceases to be
applicable. However, we have observed that for the particular case under study we can extrapolate at least
on the entire downstream boundary of the second grid block (see Figure 3.1). Thus, extrapolation of all flow

quantities will be used henceforth as downstream boundary conditions for block 2.

In the standard procedure, the downstream boundary conditions for grid block 1, i.e., on the rest of
the outflow boundary, are based on the specification of free-stream pressure and extrapolation of all other
quantities. Basically, these boundary conditions are relevant for subsonic outflow. In practice, some portion
of the downstream boundary of block 1 may also be supersonic; in this case, however, the implementation of
these pressure boundary conditions does not lead to noticeable errors because the streamwise variations of
pressure away from the nozzle arc small (the jet is close to design, it is slightly overexpanded, see below) and
therefore, specification of the free-stream pressure and extrapolation from the interior are both procedures

with acceptable accuracy.

To replace local boundary conditions on the outer boundary of block 1 (the region outside the jet) by the
more accurate global ABC’s, we use relation (2.7). However, in formula (2.7) both the input and output are
global, i.c., not only the operator T provides the ghost cell data along the entire boundary but also requires
the data along the entire (penultimate) boundary as driving terms. By using extrapolation downstream in
the jet core instead of using (2.7), we make sure that the possibly erroneous data from the global procedure
are not used on this part of the boundary. However, as the global operator T is constructed on the basis of
linearization (2.1), which is not valid in the jet area, plugging the actual flow quantities (including the jet

profile) into the right-hand side of (2.7) may potentially generate errors along the entire outer boundary.

On the other hand, it has been verificd for model examples [14] and also seen for more complex cases
that typically, closely located boundary nodes influence onc another much stronger than the remote ones.
This is a reasonable behavior from the standpoint of physics; in the structure of operators T it is reflected so
that although the matrix is dense (non-locality) its near-diagonal terms are much larger than the off-diagonal
ones (for systems as opposed to scalar equations, it will be a similar block-wise structure). The specific ratc

of decay for the off-diagonal terms can probably be obtained only for the most elementary formulations (e.g.,



the Laplace equation with periodic boundary conditions). However, although we cannot obtain analytical
cstimates for the kernels involved in operators T of (2.7), we can still make use of the actual (block-wise)
off-diagonal decay in the numerical experiments. In practical terms, this implies that although substituting
the jet profile into the right-hand side of (2.7) violates the small perturbations assumption, the associated
error on the left-hand side of (2.7) will mostly be concentrated again in the jet area, where the results are
not used for boundary conditions anyway as they are overridden by extrapolation.

Thus, the actual combined DPM-based ABC’s that we employ for computation of the foregoing jet flow
casc are the following. For most of the outer boundary (except the near-jet area) we use formula (2.7) while
substituting the actual flow profile in its right-hand side. For the jet core (outflow boundary for grid block
2) we extrapolate all flow quantities downstream. For the small intermediate portion of the downstream
boundary (near the jet core) we extrapolate all quantities except pressure, the latter is prescribed from
its free-stream value. In fact, we have observed that within a certain range (5 to 30 cells of the fine grid
described in Numerical Results), the actual location of where to switch from the pressure boundary condition
to formula (2.7) does not exert much influence on either the final accuracy or multigrid convergence rate. In

the next subsection, we provide an additional justification for the use of this procedure.

3.1. Jet Outflow Boundary Conditions. To describe and explain the specific boundary treatment
in the vicinity of the jet exit through the boundary, we start by considering the model problem below,
disregarding for a moment the connection to the global boundary procedure described above.

An model problem describing the error due to inaccurate outflow pressure data for the steady Euler

equations is,

Ae; +Bey, +Ce, =0, 7<0,

(3.1) p=g(y,2), z=0,
—o0o <y, z < o0,

where e = (p,u,v,w,p)T denotes the error and A, B, and C are constant matrices. We assume that the

boundary data has compact support outside a small portion of the boundary, i.e.

(32) g(y,z) =0, |y,z( >,

We also assume that the basc flow is subsonic and moves to the 1ight. The problem (3.1),(3.2) is a model for
the error in an approximate solution with correct outflow bounlary data given on |y, z| > & and erroneous
one’s on |y, z| < 4.

'The relation of the model problem (3.1),(3.2) to the specific sutflow problem in this paper can briefly be
described as follows. The global boundary procedure far away from the jet and the extrapolation procedure,
scc Refs. [28, 29, in the supersonic part of the jet lead to very s nall errors, i.e. |g] ~ 0. In an intermediate
domain between the supersonic part of the jet and the part whe-e the global boundary conditions are used,
pressure with erroneous data is specified, i.e. |g| = O(1) in that part of the domain.

Note that for problems with boundary conditions in the .; (or streamwise) direction it makes little
difference if one consider the inviscid Euler equations instead of t} e viscous thin layer Navier-Stokes equations
since the number and nature of the boundary conditions requireci in the z direction are the same for the two
sets of equations.

Let Q} = ([-(L +1),—L] x R*"!) where n is the number of spatial dimensions, scc Figure 3.2. The
following theorem describes the error distribution in the halfspa:e < 0.

10



THEOREM 1. The error e in (8.1),(38.2) satisfies:

. . —2
where C is a constant and |Apmaz| is the mazimal magnitude of the pressure error in |y, z| < 4§, Q" =

T4+ T2+ w? forn=3 anda2zﬁ2+ﬁ2 forn=2.

AY

Fi1c. 3.2. The domain Q% where L is the distance from Q"L to the boundary. L >> 1.

Theorem 1 means that by measuring the error in a local Lo-norm on the fized domain 27, an error decay
can be observed. Note that if the error was measured by computing the Ly norm in the whole computational
domain, no error decay could be observed. The proof of theorem 1 involves a straightforward application of
the theory of Ref. [30]. Numerical experiments that verify the decay rate (3.3) can be found in Ref. (31].

For our specific outflow problem with erroneous data given on the intermediate domain between the
supersonic part of the jet and the part where global boundary conditions are used, theorem 1 means that the
error decays with the rate 62/L away from the outflow boundary. Furthermore, in our specific flow problem
we have a slightly overexpanded jet which means that the maximum pressure error |Appqz| in (3.3) is rather

small.

3.2. Effective Reynolds Number. To calculatc the operator T of (2.7), we are solving the AP for
system (2.1). This system is obtained by linearization of the original thin-layer equations. However, as
the actual flows that we are studying are turbulent, to integrate the thin-layer equations numerically one
complements them with turbulence models inside the computational domain. These models may be complex
and require solving some additional differential equations (see next section).

For the simplified linearized far-field representation, we do not use these accurate and sophisticated
turbulence models. However, we still need to account for the corresponding turbulent mixing and dissipation,
at least in an approximate way. In the previous work [9] Tsynkov, et al. have used the concept of effective
turbulent viscosity for the far field and calculated the effective turbulent Reynolds number using the fact
that the laminar and turbulent plane wakes behind the body have the same asymptotic behavior. [32]
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The asymptotic behavior of laminar and turbulent circular ‘ets is also known to be the same (26, 32]. It
involves a lincar increase in width and a decrease in center-line velocity inverse proportional to the distance
from the source. The virtual kinematic viscosity (incompressib ¢ case) can be considered constant through
the cntire jet region. Although we do not use boundary conditions (2.7) in the core of the jet, the outer
portions of the shear layer region are still covered by the global procedure, therefore we need to provide the
effective value of 1/Re in equations (2.1).

The jet that we are studying is rectangular in its initial cross section (see next section for particular
details); however, its shape will approach circular further away of the outlet. Therefore, we will use the
results obtained for circular jets to find an approximate value for the effective Reynolds number. First, we
notice that the universal velocity profiles in a cross section of an incompressible submerged jet (i-e., the
jet that propagates through a medium at rest) are the same as those obtained for the excess velocity of
the jet propagating in a coflow. [26] Moreover, many experime¢ntal observations corroborate [26] that the
same universal profiles remain valid for a compressible supersoric jet spreading through either a stationary
or moving medium. Of course, while the profiles are universal, the actual spreading rate for the jet will
differ for different cases. Second, for the particular casc under study (the ratio of stagnation temperatures
is T} /T = 0.936; the design pressure ratio is p;/ pg‘ design = 4.25 at M; = 1.6 whereas the actual pressure
ratio is p; /po = 4.00, the jet is slightly overexpanded), the initial value of the compressibility parameter [26]
is p = po/p; = 1.41 and the initial velocity ratio is m = ug/u; = \/Tg/_Tng/Mj = 0.459. According to
Ref. [26], thesc values are within the range (0 < m < 0.6, 0.3 < p < 1.43), for which the correction due to

compressibility for the spreading rate b of the jct can be taken into account by calculating it as

1490 1—17
(343‘) bcomp = C-'E_-{—‘e ;,l
2 14+pn
instead of the old expression
1-m
3.4b binc = P
( ) CI1 +m

which is relevant for the incompressible flow; ¢ in formulac (3.4) is a constant and z is the distance from the
source.

According to the measurements referenced by Schlichting [32], for a submerged incompressible jet b, /3 =
0.0848z, where by/3 is half width of the jet at half depth. Sulstituting this into the solution for laminar
jet [26, 32|

b2

— =5.27
z

v
’

N

one obtains the virtual kinematic viscosity [32]:

(3.5) vr = 0.0161VK,

here K is the total kinematic momentum flux. Since the velo ity profiles are universal, for the jet with
coflow we only need to multiply the spreading rate by (1 — m)/(1 + m) according to formula (3.4b) and for
the compressibility correction we use (3.4a), which altogether yi-lds:

12



(3.6) vr = 0.00636 VK.

As has been mentioned, the boundary condition that we specify for the jet inflow is a uniform supersonic
profile across the entire nozzle outlet. Therefore, the quantity K can be obtained by multiplying the square
of the excess velocity (relative velocity of the jet with respect to the velocity of coflow) by the area of the
outlet o, K = (u; — ug)?0. Then, the cffective turbulent Reynolds number is calculated as Rer = UL/vr,
where U is the characteristic speed and L is the characteristic length. For the particular setting under study,

it is reasonable to assume that U = |u; — uo| and L = \/o. Consequently, from (3.6) we conclude that

(3.7) Rer = 0.00636~ ! ~ 157.

In our computations, the actual value of Re for system (2.1) was taken from (3.7).

4. Numerical Results. The particular gcometry of the body shown in Figure 3.1 is the following:
rectangular cross section y X z = 6.2 x 6.8 with rounded edges; sharp nosec and boat-tail afterbody; total
length in the = direction is 63; rectangular nozzle outlet y x z = 2.62 x 5.12; full description can be found in
the work by Compton [27].

The geometry and the flow are symmetric with respect to the plane z = 0 (zero angle of attack). For
our computations we have used three different domains with successively reduced dimensions, sec Figure 4.1;
domain I (or large domain) with the diameter of about 30 calibers of the body was used for calculating the
reference solutions, domain II is 0.36 or about 1/3 of the size of domain I in each direction and domain III

is 0.22 or about 1/5 of the size of domain I in each direction.

— Domain |

- Domain 11 (0.36)
/ e Domain 111 (0.22) (

- |

Fi1G. 4.1. Three computational domains for the jet flow, projection onto the z = 0 plane.



As has been mentioned, to integrate the thin-layer equation: on the curvilinear grid shown on Figure 3.1
we use the code TLNS3D by Vatsa, et al. [23, 24] This is a central-difference code with five stage explicit pseudo-
time Runge-Kutta relaxation used for obtaining steady-state solutions. The code employs local Courant step,
semi-implicit residual smoothing, and multigrid for accelerating the convergence. In our computations, we
used either three or two nested grid levels with V cycles (depentding on the grid dimension); this multi-level
V-cycle algorithm is, in fact, a final stage of the full multigrid (FMG) procedure. In addition, to improve
the convergence to steady state, the solver is preconditioned according to the methodology of Ref. [33].

The DPM-based ABC’s arc implemented only on the finest grid for the V-cycle in the final FMG stage;
the boundary data for coarser levels are provided by the coarsening procedure. Moreover, even on this finest
grid we implement the DPM-based ABC’s only on the first and the last Runge-Kutta stages, which has been
found [15, 16] to make very little difference compared to the implementation on all five stages; the boundary
data for the three intermediate stages are provided from the DPM-based ABC’s on the first stage.

To account for the turbulent phenomena, the solver is alsc supplemented with Menter’s two-equation
turbulence model [34]. The actual molecular Reynolds number based on unit length is Re = 321000, Prandtl
number is Pr = 0.72, specific ratio is k = 1.4,

We have used several different grids to calculate the jet flew; in all cases we kept the normal spacing
near the solid surface the same: ~ 3-107%. All grids are stretched, the cell size increases away of the body in
geometric progression. The dimension of the C-O grid block 1 for domain I was i x j x k = 385 x 77 x 33 (iis
the streamwise C-type coordinate, j is the radial coordinate, and k is the circumferential cross-stream O-type
coordinate, quarter circle). The dimension of the H-O grid block 2 for domain I was i x Jxk=81x77x65
(¢ is streamwise, j is radial, and k covers half circle). We will further refer to this grid as fine. On the
fine grid, we have calculated two reference solutions, one with standard ABC’s and another - with global
ABC’s. As the artificial boundary for domain I is located suffi iently far away of the body, the difference
between the corresponding results is negligible. On Figures 4.2, we show convergence histories for this case:
residual of the continuity equation is plotted vs. work units on Figure 4.2a and drag coefficient is plotted vs.

work units on Figure 4.2b. (One work unit is the cost of advancing one time step on the finest grid.)

Convergence histories for the jet flow

1

10

——

10 --- Standard £BC's, large domain
o © Global ABC's, large domain

{r‘?
J
/

0.0 200.0 4000  600(  800.0
Work

FIG. 4.2A. Convergence histories for the residual of the continuity equation, domain I, fine grid.
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Drag convergence for the jet flow
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FiG. 4.2B. Drag convergence, domain I, fine grid.

(From Figure 4.2 we conclude that multigrid convergence rates are the same for local and global ABC’s
on domain I. Moreover, the values of total drag coefficient per unit area Cp are summarized for this case in
the right column of Table 4.1. They differ by about one third of one per cent, which corroborates that the
type of external boundary conditions has little effect on the solution itself, as well as multigrid convergence

history, for large computational domains.

TABLE 4.1
Total drag coefficient per unit area Cp.

Domain 111 II I
Grid fine coarse fine fine
Local — 2.77+.03 | 2.74+ .04 | 2.506
Global | 2.365 2.495 2.484 2.497

For domain II, we have computed the flow on two grids with different dimensions. The first grid has the
same number of nodes as the one used in domain I; it was, in fact, constructed by scaling down the original
large grid by a factor of 0.36 in each direction. We will also refer to it as fine grid. As shown in Table 4.1,
the coefficient Cp obtained on this grid with global ABC’s differs by less than one per cent from its reference
value, whereas the accuracy provided by local ABC’s is not nearly as good, about 9% discrepancy; moreover,
because of the poor convergence (see Figures 4.3) the value of Cp for local ABC’s is given with the error
bands indicated.

The much smaller size of domain II compared to domain I actually suggests that on domain II one can
successfully compute the solution on a grid with fewer nodes. Therefore, the second grid that we have used for
domain II had one half of the original dimension in two out of three directions, block 1 i x jxk = 193 x39x 33
and block 2 i x 7 x k = 41 x 39 x 65, this grid will be referred to as coarse. Again, as follows from Table 4.1,
global ABC’s provide for an accurate solution whereas the accuracy of local ABC’s is not sufficient and the
convergence is slow (or even non-existent). Convergence histories for domain II are presented on Figures 4.3.

Since the node count for the coarse grid is only 1/4 of the node count for the fine grid, the convergence
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vs. work for the coarse grid is about four times faster (see Figures 4.3), although convergence rates measured
vs. number of multigrid cycles will be approximately the same for both grids. Note that because of the
particular grid dimensions (the issue of divisibility by 2) we have used three nested multigrid levels on the
finc grid and two levels on the coarse grid. One can clearly see from Figures 4.3 that the DPM-based ABC’s
provide for a noticeably higher multigrid convergence rate than the standard local ABC’s do. Moreover, it
is, in fact, hard to conclude from Figures 4.3 whether or not the algorithm with local ABC’s converges. If it
does, the resulting Cp will be about 10% off its reference value.

Convergence histories for the jet flow
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F1G. 4.3A. Convergence histories for the residual of the continuity =quation, domain I, fine and coarse grids.

Drag convergence for the jet flow
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FIG. 4.3B. Drag convergence, domain II, finz and coarse grids.

On domain III, the computations were performed on the finc grid, which again was obtained by scaling
down the grid from domain I (a factor of 0.22 in each direction’. The algorithm with local ABC’s for this
domain/grid failed to converge, whereas the algorithm with global ABC’s converged with the same rate
as before. However, the actual computed Cp is about 5% off its reference value (see Table 4.1). This
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can apparently be attributed to the fact that the assumption of linearity (small perturbations) outside the

computational domain is violated for such a small domain size. Convergence histories for domain III arc
presented on Figures 4.4.

Convergence histories for the jet flow
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F1G. 4.4A. Convergence histories for the residual of the continuity equation, domain 111, fine grid.

Drag convergence for the jet flow
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F1G. 4.4B. Drag convergence, domain I, fine grid.

Computations on a coarse grid for domain III were not performed because we did not expect to recover

the accurate value of Cp. However, the fact that the algorithm with global ABC’s converges on domain III
corroborates the high robustness of this procedure.

All computations described in this section were conducted on Cray Rescarch computers, J90 and C90
series. Computational overhead due to the use of global ABC’s is about 16% for the particular fine grid
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referenced before. This overhead is determined mostly by doriain geometry and typically does not scale

linearly with the dimension of interior grid. For the aforementicned coarse grid the overhead reaches 30%.

5. Conclusions. We have constructed and implemented zlobal ABC’s for calculating external flows
with jet exhaust. The ABC’s combine extrapolation of all flow quantities downstream in the supersonic
core of the jet and nonlocal DPM-based treatment for the romaining portion of outer boundary. The
overhead associated with implementation of the new technique is is compensated for by the reduced grid
dimension on small domains and higher convergence rate. In the series of computations performed, the
DPM-based algorithm have consistently demonstrated better accuracy, faster multigrid convergence, and
higher robustness compared to the standard local methodology.
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